Biological insights from topology independent comparison of protein 3D structures
نویسندگان
چکیده
Comparing and classifying the three-dimensional (3D) structures of proteins is of crucial importance to molecular biology, from helping to determine the function of a protein to determining its evolutionary relationships. Traditionally, 3D structures are classified into groups of families that closely resemble the grouping according to their primary sequence. However, significant structural similarities exist at multiple levels between proteins that belong to these different structural families. In this study, we propose a new algorithm, CLICK, to capture such similarities. The method optimally superimposes a pair of protein structures independent of topology. Amino acid residues are represented by the Cartesian coordinates of a representative point (usually the C(α) atom), side chain solvent accessibility, and secondary structure. Structural comparison is effected by matching cliques of points. CLICK was extensively benchmarked for alignment accuracy on four different sets: (i) 9537 pair-wise alignments between two structures with the same topology; (ii) 64 alignments from set (i) that were considered to constitute difficult alignment cases; (iii) 199 pair-wise alignments between proteins with similar structure but different topology; and (iv) 1275 pair-wise alignments of RNA structures. The accuracy of CLICK alignments was measured by the average structure overlap score and compared with other alignment methods, including HOMSTRAD, MUSTANG, Geometric Hashing, SALIGN, DALI, GANGSTA(+), FATCAT, ARTS and SARA. On average, CLICK produces pair-wise alignments that are either comparable or statistically significantly more accurate than all of these other methods. We have used CLICK to uncover relationships between (previously) unrelated proteins. These new biological insights include: (i) detecting hinge regions in proteins where domain or sub-domains show flexibility; (ii) discovering similar small molecule binding sites from proteins of different folds and (iii) discovering topological variants of known structural/sequence motifs. Our method can generally be applied to compare any pair of molecular structures represented in Cartesian coordinates as exemplified by the RNA structure superimposition benchmark.
منابع مشابه
Topology independent comparison of RNA 3D structures using the CLICK algorithm
RNA molecules are attractive therapeutic targets because non-coding RNA molecules have increasingly been found to play key regulatory roles in the cell. Comparing and classifying RNA 3D structures yields unique insights into RNA evolution and function. With the rapid increase in the number of atomic-resolution RNA structures, it is crucial to have effective tools to classify RNA structures and ...
متن کامل3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...
متن کاملA Method of Structure Comparison using Spatial Topological Patterns
The problem of comparison of structural similarity has been complex and computationally expensive. The first step to solve comparison of structural similarity in 3D structure databases is to develop fast methods for structural similarity. Therefore, we propose a new method of comparing structural similarity in protein structure databases by using topological patterns of proteins. In our approac...
متن کاملExpression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus
Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...
متن کاملExpression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus
Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...
متن کامل